\(\int \frac {a x^2+b x^3+c x^4}{x^2} \, dx\) [5]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 20 \[ \int \frac {a x^2+b x^3+c x^4}{x^2} \, dx=a x+\frac {b x^2}{2}+\frac {c x^3}{3} \]

[Out]

a*x+1/2*b*x^2+1/3*c*x^3

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {14} \[ \int \frac {a x^2+b x^3+c x^4}{x^2} \, dx=a x+\frac {b x^2}{2}+\frac {c x^3}{3} \]

[In]

Int[(a*x^2 + b*x^3 + c*x^4)/x^2,x]

[Out]

a*x + (b*x^2)/2 + (c*x^3)/3

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps \begin{align*} \text {integral}& = \int \left (a+b x+c x^2\right ) \, dx \\ & = a x+\frac {b x^2}{2}+\frac {c x^3}{3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.00 \[ \int \frac {a x^2+b x^3+c x^4}{x^2} \, dx=a x+\frac {b x^2}{2}+\frac {c x^3}{3} \]

[In]

Integrate[(a*x^2 + b*x^3 + c*x^4)/x^2,x]

[Out]

a*x + (b*x^2)/2 + (c*x^3)/3

Maple [A] (verified)

Time = 0.02 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.85

method result size
default \(a x +\frac {1}{2} b \,x^{2}+\frac {1}{3} c \,x^{3}\) \(17\)
risch \(a x +\frac {1}{2} b \,x^{2}+\frac {1}{3} c \,x^{3}\) \(17\)
parallelrisch \(a x +\frac {1}{2} b \,x^{2}+\frac {1}{3} c \,x^{3}\) \(17\)
parts \(a x +\frac {1}{2} b \,x^{2}+\frac {1}{3} c \,x^{3}\) \(17\)
gosper \(\frac {x \left (2 c \,x^{2}+3 b x +6 a \right )}{6}\) \(18\)
norman \(\frac {a \,x^{2}+\frac {1}{2} b \,x^{3}+\frac {1}{3} c \,x^{4}}{x}\) \(23\)

[In]

int((c*x^4+b*x^3+a*x^2)/x^2,x,method=_RETURNVERBOSE)

[Out]

a*x+1/2*b*x^2+1/3*c*x^3

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.80 \[ \int \frac {a x^2+b x^3+c x^4}{x^2} \, dx=\frac {1}{3} \, c x^{3} + \frac {1}{2} \, b x^{2} + a x \]

[In]

integrate((c*x^4+b*x^3+a*x^2)/x^2,x, algorithm="fricas")

[Out]

1/3*c*x^3 + 1/2*b*x^2 + a*x

Sympy [A] (verification not implemented)

Time = 0.02 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.75 \[ \int \frac {a x^2+b x^3+c x^4}{x^2} \, dx=a x + \frac {b x^{2}}{2} + \frac {c x^{3}}{3} \]

[In]

integrate((c*x**4+b*x**3+a*x**2)/x**2,x)

[Out]

a*x + b*x**2/2 + c*x**3/3

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.80 \[ \int \frac {a x^2+b x^3+c x^4}{x^2} \, dx=\frac {1}{3} \, c x^{3} + \frac {1}{2} \, b x^{2} + a x \]

[In]

integrate((c*x^4+b*x^3+a*x^2)/x^2,x, algorithm="maxima")

[Out]

1/3*c*x^3 + 1/2*b*x^2 + a*x

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.80 \[ \int \frac {a x^2+b x^3+c x^4}{x^2} \, dx=\frac {1}{3} \, c x^{3} + \frac {1}{2} \, b x^{2} + a x \]

[In]

integrate((c*x^4+b*x^3+a*x^2)/x^2,x, algorithm="giac")

[Out]

1/3*c*x^3 + 1/2*b*x^2 + a*x

Mupad [B] (verification not implemented)

Time = 0.01 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.80 \[ \int \frac {a x^2+b x^3+c x^4}{x^2} \, dx=\frac {c\,x^3}{3}+\frac {b\,x^2}{2}+a\,x \]

[In]

int((a*x^2 + b*x^3 + c*x^4)/x^2,x)

[Out]

a*x + (b*x^2)/2 + (c*x^3)/3